仲博彩票平台返点_仲博彩票平台技巧
仲博彩票平台开奖结果2023-01-31 16:05

仲博彩票平台返点

国家主席习近平发表二〇二三年新年贺词******

  新年前夕,国家主席习近平通过中央广播电视总台和互联网,发表二〇二三年新年贺词。新华社记者 鞠鹏 摄

  新华社北京12月31日电新年前夕,国家主席习近平通过中央广播电视总台和互联网,发表了二〇二三年新年贺词。全文如下:

  大家好!2023年即将到来,我在北京向大家致以美好的新年祝福!

  2022年,我们胜利召开党的二十大,擘画了全面建设社会主义现代化国家、以中国式现代化全面推进中华民族伟大复兴的宏伟蓝图,吹响了奋进新征程的时代号角。

  我国继续保持世界第二大经济体的地位,经济稳健发展,全年国内生产总值预计超过120万亿元。面对全球粮食危机,我国粮食生产实现“十九连丰”,中国人的饭碗端得更牢了。我们巩固脱贫攻坚成果,全面推进乡村振兴,采取减税降费等系列措施为企业纾难解困,着力解决人民群众急难愁盼问题。

  疫情发生以来,我们始终坚持人民至上、生命至上,坚持科学精准防控,因时因势优化调整防控措施,最大限度保护了人民生命安全和身体健康。广大干部群众特别是医务人员、基层工作者不畏艰辛、勇毅坚守。经过艰苦卓绝的努力,我们战胜了前所未有的困难和挑战,每个人都不容易。目前,疫情防控进入新阶段,仍是吃劲的时候,大家都在坚忍不拔努力,曙光就在前头。大家再加把劲,坚持就是胜利,团结就是胜利。

  2022年,江泽民同志离开了我们。我们深切缅怀他的丰功伟绩和崇高风范,珍惜他留下的宝贵精神财富。我们要继承他的遗志,把新时代中国特色社会主义事业不断推向前进。

  历史长河波澜壮阔,一代又一代人接续奋斗创造了今天的中国。

  今天的中国,是梦想接连实现的中国。北京冬奥会、冬残奥会成功举办,冰雪健儿驰骋赛场,取得了骄人成绩。神舟十三号、十四号、十五号接力腾飞,中国空间站全面建成,我们的“太空之家”遨游苍穹。人民军队迎来95岁生日,广大官兵在强军伟业征程上昂扬奋进。第三艘航母“福建号”下水,首架C919大飞机正式交付,白鹤滩水电站全面投产……这一切,凝结着无数人的辛勤付出和汗水。点点星火,汇聚成炬,这就是中国力量!

  今天的中国,是充满生机活力的中国。各自由贸易试验区、海南自由贸易港蓬勃兴起,沿海地区踊跃创新,中西部地区加快发展,东北振兴蓄势待发,边疆地区兴边富民。中国经济韧性强、潜力大、活力足,长期向好的基本面依然不变。只要笃定信心、稳中求进,就一定能实现我们的既定目标。今年我去了香港,看到香港将由治及兴十分欣慰。坚定不移落实好“一国两制”,香港、澳门必将长期繁荣稳定。

  今天的中国,是赓续民族精神的中国。这一年发生的地震、洪水、干旱、山火等自然灾害和一些安全事故,让人揪心,令人难过,但一幕幕舍生取义、守望相助的场景感人至深,英雄的事迹永远铭记在我们心中。每当辞旧迎新,总会念及中华民族千年传承的浩然之气,倍增前行信心。

  今天的中国,是紧密联系世界的中国。这一年,我在北京迎接了不少新老朋友,也走出国门讲述中国主张。百年变局加速演进,世界并不太平。我们始终如一珍视和平和发展,始终如一珍惜朋友和伙伴,坚定站在历史正确的一边、站在人类文明进步的一边,努力为人类和平与发展事业贡献中国智慧、中国方案。

  党的二十大后我和同事们一起去了延安,重温党中央在延安时期战胜世所罕见困难的光辉岁月,感悟老一辈共产党人的精神力量。我常说,艰难困苦,玉汝于成。中国共产党百年栉风沐雨、披荆斩棘,历程何其艰辛又何其伟大。我们要一往无前、顽强拼搏,让明天的中国更美好。

  明天的中国,奋斗创造奇迹。苏轼有句话:“犯其至难而图其至远”,意思是说“向最难之处攻坚,追求最远大的目标”。路虽远,行则将至;事虽难,做则必成。只要有愚公移山的志气、滴水穿石的毅力,脚踏实地,埋头苦干,积跬步以至千里,就一定能够把宏伟目标变为美好现实。

  明天的中国,力量源于团结。中国这么大,不同人会有不同诉求,对同一件事也会有不同看法,这很正常,要通过沟通协商凝聚共识。14亿多中国人心往一处想、劲往一处使,同舟共济、众志成城,就没有干不成的事、迈不过的坎。海峡两岸一家亲。衷心希望两岸同胞相向而行、携手并进,共创中华民族绵长福祉。

  明天的中国,希望寄予青年。青年兴则国家兴,中国发展要靠广大青年挺膺担当。年轻充满朝气,青春孕育希望。广大青年要厚植家国情怀、涵养进取品格,以奋斗姿态激扬青春,不负时代,不负华年。

  此时此刻,许多人还在辛苦忙碌,大家辛苦了!新年的钟声即将敲响,让我们怀着对未来的美好向往,共同迎接2023年的第一缕阳光。

  祝愿祖国繁荣昌盛、国泰民安!祝愿世界和平美好、幸福安宁!祝愿大家新年快乐、皆得所愿!

  谢谢!

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

中国网客户端

国家重点新闻网站,9语种权威发布

仲博彩票平台地图